Let $A = \{1, 2, 3, 4\}$ and let $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on $A$. Then $R$ is

  • A

    Reflexive

  • B

    Symmetric

  • C

    Transitive

  • D

    None of these

Similar Questions

Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation $\mathrm{R}$ in the set $\mathrm{Z}$ of all integers defined as $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}-\mathrm{y}$ is an integer $\}$

Show that the relation $R$ defined in the set $A$ of all polygons as $R=\left\{\left(P_{1}, P_{2}\right):\right.$ $P _{1}$ and $P _{2}$ have same number of sides $\}$, is an equivalence relation. What is the set of all elements in $A$ related to the right angle triangle $T$ with sides $3,\,4$ and $5 ?$

Show that the relation $R$ in the set $\{1,2,3\}$ given by $R =\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

Given a non empty set $X$, consider $P ( X )$ which is the set of all subsets of $X$.

Define the relation $R$ in $P(X)$ as follows :

For subsets $A,\, B$ in $P(X),$ $ARB$ if and only if $A \subset B .$ Is $R$ an equivalence relation on $P ( X ) ?$ Justify your answer.

Let $R = \{ (3,\,3),\;(6,\;6),\;(9,\,9),\;(12,\,12),\;(6,\,12),\;(3,\,9),(3,\,12),\,(3,\,6)\} $ be a relation on the set $A = \{ 3,\,6,\,9,\,12\} $. The relation is

  • [AIEEE 2005]