Let the sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^2}\right)^n, x \neq 0, n \in N$, be $376$. Then the coefficient of $x^4$ is $......$
$404$
$403$
$402$
$405$
In the expansion of ${\left( {{x^2} - 2x} \right)^{10}}$, the coefficient of ${x^{16}}$ is
If the ratio of the fifth term from the begining to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^n$ is $\sqrt{6}: 1$, then the third term from the beginning is:
The value of $x$, for which the 6th term in the expansion of ${\left\{ {{2^{{{\log }_2}\sqrt {({9^{x - 1}} + 7)} }} + \frac{1}{{{2^{(1/5){{\log }_2}({3^{x - 1}} + 1)}}}}} \right\}^7}$ is $84$, is equal to
If the coefficients of $x$ and $x^{2}$ in the expansion of $(1+x)^{p}(1-x)^{q}, p, q \leq 15$, are $-3$ and $-5$ respectively, then the coefficient of $x ^{3}$ is equal to $............$
If ${\left( {2 + \frac{x}{3}} \right)^{55}}$ is expanded in the ascending powers of $x$ and the coefficients of powers of $x$ in two consecutive terms of the expansion are equal, then these terms are