7.Binomial Theorem
hard

ધારોકે $\left(x-\frac{3}{x^2}\right)^n, x \neq 0 . n \in N$ ના વિસ્તરણમાં પ્રથમ ત્રણ પદોના સહગુણકોનો સરવાળો $376$ છે. તો $x^4$ નો સહગુણક $..........$ છે.

A

$404$

B

$403$

C

$402$

D

$405$

(JEE MAIN-2023)

Solution

Given Binomial $\left(x-\frac{3}{x^2}\right)^n, x \neq 0, n \in N$

Sum of coefficients of first three terms

${ }^n C_0-{ }^n C_1 \cdot 3+{ }^n C_2 3^2=376$

$\Rightarrow 3 n^2-5 n-250=0$

$\Rightarrow(n-10)(3 n+25)=0$

$\Rightarrow n =10$

Now general term ${ }^{10} C _{ r } x ^{10- r }\left(\frac{-3}{ x ^2}\right)^{ r }$

$={ }^{10} C _{ r } x ^{10- r }(-3)^{ r } \cdot x ^{-2 r }$

$={ }^{10} C _{ r }(-3)^{ r } \cdot x ^{10-3 r }$

Coefficient of $x^4 \Rightarrow 10-3 r=4$

$\Rightarrow r =2$

${ }^{10} C _2(-3)^2=405$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.