ધારોકે $\left(x-\frac{3}{x^2}\right)^n, x \neq 0 . n \in N$ ના વિસ્તરણમાં પ્રથમ ત્રણ પદોના સહગુણકોનો સરવાળો $376$ છે. તો $x^4$ નો સહગુણક $..........$ છે.

  • [JEE MAIN 2023]
  • A

    $404$

  • B

    $403$

  • C

    $402$

  • D

    $405$

Similar Questions

${\left( {2x - \frac{3}{x}} \right)^6}$ ના વિસ્તરણમાં અચળપદ મેળવો.

જો $^n{C_{r - 2}} = 36$ , $^n{C_{r - 1}} = 84$ અને $^n{C_r} = 126$ ,હોય તો $^n{C_{2r}}$ ની કિમત મેળવો 

જો ${\left( {{x^2} + \frac{1}{x}} \right)^n}$ ના વિસ્તરણમાં મધ્યમપદ $924{x^6}$ હોય તો $n = $

${(1 + 3x + 3{x^2} + {x^3})^6}$ ના વિસ્તરણમાં મધ્યમપદ મેળવો.

જો ${\left( {9\,x\,\, - \,\,\frac{1}{{3\,\sqrt x }}} \right)^{18}}, x > 0$ , ના વિસ્તરણમાં અચળ પદએ તેના અનુરૂપ દ્રીપદી સહગુણકને $\alpha$ ગણું હોય તો $' \alpha '$ ની કિમત મેળવો