ધારો કે સમીકરણ સંહતિ $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ ને અસંખ્ય ઉકેલો છે. $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10$ ને:
અસંખ્ય ઉકેલો છે
$x-y=1$ નું સમાધાન કરતો અનન્ય ઉકેલ છે.
ઉકેલ નથી
$x+y=1$ નું સમાધાન કરતો અનન્ય ઉકેલ છે.
જો $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = k(a + b + c)({a^2} + {b^2} + {c^2}$ $ - bc - ca - ab)$, તો $k =$
જો ${x^a}{y^b} = {e^m},{x^c}{y^d} = {e^n},{\Delta _1} = \left| {\,\begin{array}{*{20}{c}}m&b\\n&d\end{array}\,} \right|\,\,{\Delta _2} = \left| {\,\begin{array}{*{20}{c}}a&m\\c&n\end{array}\,} \right|$ અને ${\Delta _3} = \left| {\,\begin{array}{*{20}{c}}a&b\\c&d\end{array}\,} \right|$, તો $x$ અને $y$ ની કિમત મેળવો.
જો $-9 $ એ સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$ નું બીજ હોય તો બાકી ના બે બીજ મેળવો.
$\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$ નો અવયવ . . . .થાય.
જો $A \ne O$ અને $B \ne O$ એ $n × n$ કક્ષાવાળા શ્રેણિક હોય અને $AB = O $ તો . . .