નિશ્ચાયકની કિમત મેળવો : $\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$
Let $A=\left[\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right]$
By expanding along the first column, we have:
$|A|=2\left|\begin{array}{cc}2 & -1 \\ -5 & 0\end{array}\right|-0\left|\begin{array}{cc}-1 & -2 \\ -5 & 0\end{array}\right|+3\left|\begin{array}{cc}-1 & -2 \\ 2 & -1\end{array}\right|$
$=2(0-5)-0+3(1+4)$
$=-10+15=5$
$ k$ ની . . . . કિમત માટે સમીકરણો $x + ky + 3z = 0,$ $3x + ky - 2z = 0,$ $2x + 3y - 4z = 0$ ને શૂન્યતર ઉકેલ મળે.
જો $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$ હોય તો $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ ની કિમંત મેળવો.
જો રેખાઓ $x + 2ay + a = 0, x + 3by + b = 0$ અને $x + 4cy + c = 0$ એ સંગામી રેખાઓ હોય તો $a, b$ અને $c$ એ .. .. શ્રેણીમાં હોય .
ધારોકે $\alpha \beta \neq 0$ અને $\mathrm{A}=\left[\begin{array}{rrr}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$. જો $B=\left[\begin{array}{rrr}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$ એ $A$ ના ઘટકોના સહઅવયવો નો શ્રેણિક હોય, તો $\operatorname{det}(A B)=$ ............
જો ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,\theta }&{\cos \,\theta } \\
{\sin \,\theta }&{ - x}&1 \\
{\cos \,\theta }&1&x
\end{array}} \right|$ અને ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,2\theta }&{\cos \,\,2\theta } \\
{\sin \,2\theta }&{ - x}&1 \\
{\cos \,\,2\theta }&1&x
\end{array}} \right|$, $x \ne 0$ ;તો દરેક $\theta \in \left( {0,\frac{\pi }{2}} \right)$ માટે . . . .