- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
Let the system of linear equations $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?
A
$\mu=6, \lambda \in R$
B
$\lambda=2, \mu \in R$
C
$\lambda=3, \mu \in R$
D
$\mu=-6, \lambda \in R$
(JEE MAIN-2021)
Solution
For non-trivial solution
$\left|\begin{array}{ccc} 4 & \lambda & 2 \\ 2 & -1 & 1 \\ \mu & 2 & 3 \end{array}\right|=0$
$\Rightarrow 2 \mu-6 \lambda+\lambda \mu=12$
when $\mu=6, \quad 12-6 \lambda+6 \lambda=12$
which is satisfied by all $\lambda$
Standard 12
Mathematics