For what value of $k$ to the following system of equations possess a non-trivial solution ?
$x + ky + 3z = 0$ ; $3x + ky + 2z = 0$ ; $2x + 3y + 4z = 0$
$\frac {11}{14}$
$-\frac {33}{2}$
$\frac {33}{20}$
$\frac {33}{2}$
Let $S=\left\{A=\left(\begin{array}{lll}0 & 1 & c \\ 1 & a & d \\ 1 & b & e\end{array}\right): a, b, c, d, e \in\{0,1\}\right.$ and $\left.|A| \in\{-1,1\}\right\}$, where $|A|$ denotes the determinant of $A$. Then the number of elements in $S$ is. . . . .
The number of values of $\theta \in (0,\pi)$ for which the system of linear equations
$x + 3y + 7z = 0$
$-x + 4y + 7z = 0$
$(sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ has a non-trivial solution, is
Let $\lambda \in R .$ The system of linear equations
$2 x_{1}-4 x_{2}+\lambda x_{3}=1$
$x_{1}-6 x_{2}+x_{3}=2$
$\lambda x_{1}-10 x_{2}+4 x_{3}=3$ is inconsistent for
If $\omega $ be a complex cube root of unity, then $\left| {\,\begin{array}{*{20}{c}}1&\omega &{ - {\omega ^2}/2}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $
If $f(\theta ) =\left| {\begin{array}{*{20}{c}}
1&{\cos {\mkern 1mu} \theta }&1\\
{ - \sin {\mkern 1mu} \theta }&1&{ - \cos {\mkern 1mu} \theta }\\
{ - 1}&{\sin {\mkern 1mu} \theta }&1
\end{array}} \right|$ and $A$ and $B$ are respectively the maximum and the minimum values of $f(\theta )$, then $(A , B)$ is equal to