3 and 4 .Determinants and Matrices
medium

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$  are

A

$1, 2$

B

$-1, 2$

C

$1, -2$

D

$-1, -2$

Solution

(b) We have $\left| {\,\begin{array}{*{20}{c}}{x – 1}&1&1\\1&{x – 1}&1\\1&1&{x – 1}\end{array}\,} \right|\, = 0$

$ \Rightarrow $$\left| {\,\begin{array}{*{20}{c}}{x + 1}&1&1\\{x + 1}&{x – 1}&1\\{x + 1}&1&{x – 1}\end{array}\,} \right|\, = 0$,

{Applying ${C_1} \to {C_1} + {C_2} + {C_3}$}

$ \Rightarrow $$(x + 1)\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{x – 1}&1\\1&1&{x – 1}\end{array}\,} \right|$= 0

$ \Rightarrow $ $(x + 1)\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\0&{x – 2}&0\\0&0&{x – 2}\end{array}\,} \right| = 0$

{Applying ${R_2} \to {R_2} – {R_1},\,{R_3} \to {R_3} – {R_1}$}

$\Rightarrow $ $(x+1) (x-2)^2 = 0 => x =-1,2. $

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.