Locus of the points which are at equal distance from $3x + 4y - 11 = 0$ and $12x + 5y + 2 = 0$ and which is near the origin is
$21x - 77y + 153 = 0$
$99x + 77y - 133 = 0$
$7x - 11y = 19$
None of these
A pair of straight lines $x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 = 0$ are forming a square. Co-ordinates of the centre of the circle inscribed in the square are
If one vertex of an equilateral triangle of side $'a'$ lies at the origin and the other lies on the line $x - \sqrt{3} y = 0$ then the co-ordinates of the third vertex are :
Let $A B C D$ be a square of side length $1$ . Let $P, Q, R, S$ be points in the interiors of the sides $A D, B C, A B, C D$ respectively, such that $P Q$ and $R S$ intersect at right angles. If $P Q=\frac{3 \sqrt{3}}{4}$, then $R S$ equals
The ends of the base of an isosceles triangle are at $(2a,\;0)$ and $(0,\;a).$ The equation of one side is $x=2a$ The equation of the other side is
Let the equations of two adjacent sides of a parallelogram $A B C D$ be $2 x-3 y=-23$ and $5 x+4 y$ $=23$. If the equation of its one diagonal $AC$ is $3 x +$ $7 y=23$ and the distance of A from the other diagonal is $d$, then $50 d ^2$ is equal to $........$.