If the vertices $P$ and $Q$ of a triangle $PQR$ are given by $(2, 5)$ and $(4, -11)$ respectively, and the point $R$ moves along the line $N: 9x + 7y + 4 = 0$, then the locus of the centroid of the triangle $PQR$ is a straight line parallel to
$PQ$
$QR$
$RP$
$N$
A square of side a lies above the $x$ -axis and has one vertex at the origin. The side passing through the origin makes an angle $\alpha ,(0 < \alpha < \frac{\pi }{4})$ with the positive direction of $x$-axis. The equation of its diagonal not passing through the origin is
The line $3x + 2y = 24$ meets $y$-axis at $A$ and $x$-axis at $B$. The perpendicular bisector of $AB$ meets the line through $(0, - 1)$ parallel to $x$-axis at $C$. The area of the triangle $ABC$ is ............... $\mathrm{sq. \, units}$
Draw a quadrilateral in the Cartesian plane, whose vertices are $(-4,5),(0,7) (5,-5)$ and $(-4,-2) .$ Also, find its area.
Let the equation of two sides of a triangle be $3x\,-\,2y\,+\,6\,=\,0$ and $4x\,+\,5y\,-\,20\,=\,0.$ If the orthocentre of this triangle is at $(1, 1),$ then the equation of its third side is
The locus of a point $P$ which divides the line joining $(1, 0)$ and $(2\cos \theta ,2\sin \theta )$ internally in the ratio $2 : 3$ for all $\theta $, is a