- Home
- Standard 11
- Mathematics
9.Straight Line
normal
If the vertices $P$ and $Q$ of a triangle $PQR$ are given by $(2, 5)$ and $(4, -11)$ respectively, and the point $R$ moves along the line $N: 9x + 7y + 4 = 0$, then the locus of the centroid of the triangle $PQR$ is a straight line parallel to
A
$PQ$
B
$QR$
C
$RP$
D
$N$
Solution

$R (x, y)$ lies on $9x + 7y + 4 =0$
$ \Rightarrow R\left( {a,\frac{{\left( {4 + 9a} \right)}}{7}} \right)$ , centroid of $\Delta PQR = (h, k)$
$h = \left( {\frac{{2 + 4 + a}}{3}} \right) = \frac{{6 + a}}{3}$ $….(1)$
$k = \frac{{5 – 11 – \frac{{(4 + 9a)}}{7}}}{3} = \frac{{ – 46 – 9a}}{{7 \times 3}}$ $….(2)$
from $(1) \& (2)$ we get
equating $x$ $3h – 6 = \frac{{ – (21k – 46)}}{9} \Rightarrow 27h + 21k – 54 + 46 = 0$
or locus is $9x + 7y – 8/3 = 0$
this line is $\coprod $ to $N$
Standard 11
Mathematics
Similar Questions
normal