9.Straight Line
normal

If the vertices $P$ and $Q$ of a triangle $PQR$ are given by $(2, 5)$ and $(4, -11)$ respectively, and the point $R$ moves along the line $N: 9x + 7y + 4 = 0$, then the locus of the centroid of the triangle $PQR$ is a straight line parallel to

A

$PQ$

B

$QR$

C

$RP$

D

$N$

Solution

$R (x, y)$ lies on $9x + 7y + 4 =0$

$ \Rightarrow R\left( {a,\frac{{\left( {4 + 9a} \right)}}{7}} \right)$ , centroid of $\Delta PQR = (h, k)$

$h = \left( {\frac{{2 + 4 + a}}{3}} \right) = \frac{{6 + a}}{3}$ $….(1)$

$k = \frac{{5 – 11 – \frac{{(4 + 9a)}}{7}}}{3} = \frac{{ – 46 – 9a}}{{7 \times 3}}$ $….(2)$

from $(1) \& (2)$ we get

equating $x$   $3h – 6 = \frac{{ – (21k – 46)}}{9} \Rightarrow 27h + 21k – 54 + 46 = 0$

or locus is $9x + 7y – 8/3 = 0$

this line is $\coprod $ to $N$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.