Match $List-I$ with $List-II$.
$List-I$ | $List-II$ |
$(A)$ $\Psi_{ MO }=\Psi_{ A }-\Psi_{ B }$ | $(I)$ Dipole moment |
$(B)$ $\mu=Q \times I$ | $(II)$ Bonding molecular orbital |
$(C)$ $\frac{N_{b}-N_{a}}{2}$ | $(III)$ Anti-bonding molecualr orbital |
$(D)$ $\Psi_{ MO }=\Psi_{ A }+\Psi_{ B }$ | $(IV)$ Bond order |
$(A)-(II), (B)-(I), (C)-(IV), (D)-(III)$
$(A)-(III), (B)-(IV), (C)-(I), (D)-(II)$
$(A)-(III), (B)-(I), (C)-(IV), (D)-(II)$
$(A)-(III), (B)-(IV), (C)-(II), (D)-(I)$
Which one of the following species does not exist under normal conditions ?
Bond order of $C_2$ vapour is :
In which $O-O$ bond distance is minimum
The bond order of $O_2^ + $ is the same as in
When $O _2$ is adsorbed on a metallic surface, electron transfer occurs from the metal to $O _2$. The $TRUE$ statement$(s)$ regarding this adsorption is(are)
$(A)$ $O _2$ is physisorbed
$(B)$ heat is released
$(C)$ occupancy of $\pi_{2 p }^*$ of $O _2$ is increased
$(D)$ bond length of $O _2$ is increased