Match each of the set on the left in the roster form with the same set on the right described in set-builder form:

$(i)$ $\{1,2,3,6\}$ $(a)$ $\{ x:x$ is a prime number and a divisor $6\} $ 
$(ii)$ $\{2,3\}$ $(b)$ $\{ x:x$ is an odd natural number less than $10\} $
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ $(c)$ $\{ x:x$ is natural number and divisor of $6\} $
$(iv)$ $\{1,3,5,7,9\}$ $(d)$ $\{ x:x$ a letter of the work $\mathrm{MATHEMATICS}\} $

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(i)$ All the elements of this set are natural numbers as well as the divisors of $6 .$ Therefore, $(i)$ matches with $(c).$

$(ii)$ It can be seen that $2$ and $3$ are prime numbers. They are also the divisors of $6 .$ Therefore, $(ii)$ matches with $(a).$

$(iii)$ All the elements of this set are letters of the word $MATHEMATICS.$ Therefore, $(iii)$ matches with $(d).$

$(iv)$ All the elements of this set are odd natural numbers less than $10 .$ Therefore, $(iv)$ matches with $(b).$

Similar Questions

The number of elements in the set $\{x \in R :(|x|-3)|x+4|=6\}$ is equal to

  • [JEE MAIN 2021]

Write the following sets in the set-builder form :

${\rm{\{ 2,4,8,16,32\} }}$

Consider the sets

$\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$

Insert the symbol $\subset$ or $ \not\subset $ between each of the following pair of sets:

$B \ldots \cdot C$

The number of non-empty subsets of the set $\{1, 2, 3, 4\}$ is

Write the set $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\right\}$ in the set-builder form.