Consider the sets
$\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$
Insert the symbol $\subset$ or $ \not\subset $ between each of the following pair of sets:
$A \ldots C$
Let $S = \{ 0,\,1,\,5,\,4,\,7\} $. Then the total number of subsets of $S$ is
Examine whether the following statements are true or false :
$\{ x:x$ is an even natural number less than $6\} \subset \{ x:x$ is a natural mumber which divide $36\} $
Match each of the set on the left described in the roster form with the same set on the right described in the set-builder form:
$(i)$ $\{ P,R,I,N,C,A,L\} $ | $(a)$ $\{ x:x$ is a positive integer and is adivisor of $18\} $ |
$(ii)$ $\{ \,0\,\} $ | $(b)$ $\{ x:x$ is an integer and ${x^2} - 9 = 0\} $ |
$(iii)$ $\{ 1,2,3,6,9,18\} $ | $(c)$ $\{ x:x$ is an integer and $x + 1 = 1\} $ |
$(iv)$ $\{ 3, - 3\} $ | $(d)$ $\{ x:x$ is aletter of the word $PRINCIPAL\} $ |
Write the following sets in the set-builder form :
$\{ 1,4,9 \ldots 100\} $