Match List$-I$ with List$-II$.

List$-I$ List$-II$
$(A)$ Angular momentum $(I)$ $\left[ ML ^2 T ^{-2}\right]$
$(B)$ Torque $(II)$ $\left[ ML ^{-2} T ^{-2}\right]$
$(C)$ Stress $(III)$ $\left[ ML ^2 T ^{-1}\right]$
$(D)$ Pressure gradient $(IV)$ $\left[ ML ^{-1} T ^{-2}\right]$

Choose the correct answer from the options given below:

  • [JEE MAIN 2023]
  • A

    $(A)-(I), (B)-(IV), (C)-(III), (D)-(II)$

  • B

    $(A)-(III), (B)-(I), (C)-(IV), (D)-(II)$

  • C

    $(A)-(II), (B)-(III), (C)-(IV), (D)-(I)$

  • D

    $(A)-(IV), (B)-(II), (C)-(I), (D)-(III)$

Similar Questions

If the dimensions of length are expressed as ${G^x}{c^y}{h^z}$; where $G,\,c$ and $h$ are the universal gravitational constant, speed of light and Planck's constant respectively, then

  • [IIT 1992]

$ML{T^{ - 1}}$ represents the dimensional formula of

If force $(F)$, velocity $(V)$ and time $(T)$ are considered as fundamental physical quantity, then dimensional formula of density will be:

  • [JEE MAIN 2023]

$Assertion$ : Specific gravity of a fluid is a dimensionless quantity.

$Reason$ : It is the ratio of density of fluid to the density of water

  • [AIIMS 2005]

The amount of heat energy $Q$, used to heat up a substance depends on its mass $m$, its specific heat capacity $(s)$ and the change in temperature $\Delta T$ of the substance. Using dimensional method, find the expression for $s$ is (Given that $\left.[s]=\left[ L ^2 T ^{-2} K ^{-1}\right]\right)$ is