Match List$-I$ with List$-II$.

List$-I$ List$-II$
$(A)$ Angular momentum $(I)$ $\left[ ML ^2 T ^{-2}\right]$
$(B)$ Torque $(II)$ $\left[ ML ^{-2} T ^{-2}\right]$
$(C)$ Stress $(III)$ $\left[ ML ^2 T ^{-1}\right]$
$(D)$ Pressure gradient $(IV)$ $\left[ ML ^{-1} T ^{-2}\right]$

Choose the correct answer from the options given below:

  • [JEE MAIN 2023]
  • A

    $(A)-(I), (B)-(IV), (C)-(III), (D)-(II)$

  • B

    $(A)-(III), (B)-(I), (C)-(IV), (D)-(II)$

  • C

    $(A)-(II), (B)-(III), (C)-(IV), (D)-(I)$

  • D

    $(A)-(IV), (B)-(II), (C)-(I), (D)-(III)$

Similar Questions

Match List $I$ with List $II$

LIST$-I$ LIST$-II$
$(A)$  Torque $(I)$    $ML ^{-2} T ^{-2}$
$(B)$   Stress $(II)$   $ML ^2 T ^{-2}$
$(C)$   Pressure of gradient $(III)$   $ML ^{-1} T ^{-1}$
$(D)$   Coefficient of viscosity $(IV)$   $ML ^{-1} T ^{-2}$

Choose the correct answer from the options given below

  • [JEE MAIN 2023]

Why concept of dimension has basic importance ?

The quantities $A$ and $B$ are related by the relation, $m = A/B$, where $m$ is the linear density and $A$ is the force. The dimensions of $B$ are of

The potential energy of a particle varies with distance $x$ from a fixed origin as $U\, = \,\frac{{A\sqrt x }}{{{x^2} + B}}$ Where $A$ and $B$ are dimensional constants then find the dimensional formula for $A/B$

Young-Laplace law states that the excess pressure inside a soap bubble of radius $R$ is given by $\Delta P=4 \sigma / R$, where $\sigma$ is the coefficient of surface tension of the soap. The EOTVOS number $E_0$ is a dimensionless number that is used to describe the shape of bubbles rising through a surrounding fluid. It is a combination of $g$, the acceleration due to gravity $\rho$ the density of the surrounding fluid $\sigma$ and a characteristic length scale $L$ which could be the radius of the bubble. A possible expression for $E_0$ is 

  • [KVPY 2013]