Match the nuclear processes given in column $I$ with the appropriate option$(s)$ in column $II$
column $I$ | column $II$ |
$(A.)$Nuclear fusion | $(P.)$ Absorption of thermal neutrons by ${ }_{92}^{213} U$ |
$(B.)$Fission in a nuclear reactor | $(Q.)$ ${ }_{27}^{60} Co$ nucleus |
$(C.)$ $\beta$-decay | $(R.)$ Energy production in stars via hydrogen conversion to helium |
$(D.)$ $\gamma$-ray emission | $(S.)$ Heavy water |
$(T.)$ Neutrino emission |
$( A ) \rightarrow( R , T ) ;( B ) \rightarrow( P , S ) ;( C ) \rightarrow( P , Q , R , T ) ;( D ) \rightarrow( P , Q , R , T )$
$( A ) \rightarrow( R , S ) ;( B ) \rightarrow( P , T ) ;( C ) \rightarrow( P , Q , R , S ) ;( D ) \rightarrow( P , Q , R , S )$
$( A ) \rightarrow( R , S ) ;( B ) \rightarrow( P , Q ) ;( C ) \rightarrow( P , Q , R , S ) ;( D ) \rightarrow( P , Q , T , S )$
$( A ) \rightarrow( P , T ) ;( B ) \rightarrow( Q , S ) ;( C ) \rightarrow( Q , R , S , T ) ;( D ) \rightarrow( P , R , S , T )$
Two radioactive materials $X_1$ and $X_2$ have decay constant $5\lambda$ and $\lambda$ respectively intially they have the saame number of nuclei, then the ratio of the number of nuclei of $X_1$ to that $X_2$ will be $\frac{1}{e}$ after a time
The activity of a radioactive sample is measured as $N_0$ counts per minute at $t = 0$ and $N_0/e$ counts per minute at $t = 5\, minutes$. The time (in $minutes$) at which the activity reduces to half its value is
The half-life of a radioactive substance is $T$. The time taken, for disintegrating $\frac{7}{8}$ th part of its original mass will be
A certain radioactive material can undergo three different types of decay, each with a different decay constant $\lambda_1$, $\lambda_2$ and $\lambda_3$ . Then the effective decay constant is
A fraction $f_1$ of a radioactive sample decays in one mean life, and a fraction $f_2$ decays in one half-life.