Matrix $\left[ {\begin{array}{*{20}{c}}0&{ - 4}&1\\4&0&{ - 5}\\{ - 1}&5&0\end{array}} \right]$is
Orthogonal
Idempotent
Skew- symmetric
Symmetric
(c) It is skew-symmetric.
Let $A\, = \,\left( {\begin{array}{*{20}{c}} 0&{2q}&r\\ p&q&{ – r}\\ p&{ – q}&r \end{array}} \right)$. If $A{A^T}\, = \,{I_3},\,\left| p \right|$ then $\left| p \right|$ is
If $A = \left( {\begin{array}{*{20}{c}} {\alpha – 1}\\ 0\\ 0 \end{array}} \right),\,\,\,B = \left( {\begin{array}{*{20}{c}} {\alpha + 1}\\ 0\\ 0 \end{array}} \right)$ be two matrices, then $AB^T$ is a non-zero matrix for $\left| \alpha \right|$ not equal to
Given $A$ and $C$ are involutary matrices and $B$ is a non-singular matrix, then $(AB^{-1}C)^{-1}$ is equal to –
If $A$ is a square matrix for which ${a_{ij}} = {i^2} – {j^2}$, then $A$ is
If $A$ and $B $ be symmetric matrices of the same order, then $AB – BA$ will be a
Confusing about what to choose? Our team will schedule a demo shortly.