दो सदिशों $P$ तथा $Q$ के परिणामी के अधिकतम तथा न्यूनतम परिमाणों का अनुपात $3:1$ है। निम्न में से कौन सा संबध सही है
$P = 2Q$
$P = Q$
$PQ = 1$
उपरोक्त में से कोई नहीं
यदि $|{\mathop V\limits^ \to _1} + {\mathop V\limits^ \to _2}|\, = \,|{\mathop V\limits^ \to _1} - {\mathop V\limits^ \to _2}|$ तथा ${V_2}$ नियत हैं, तो
समान परिमाण $\mathrm{R}$ के दो सदिशों $\overrightarrow{\mathrm{A}}$ व $\overrightarrow{\mathrm{B}}$ के बीच का कोण $\theta$ है तब
कथन $: I$
यदि तीन बलों $\overrightarrow{ F }_{1}, \overrightarrow{ F }_{2}$ तथा $\overrightarrow{ F }_{3}$ को एक त्रिभुज की तीन भुजाओं द्वारा प्रदर्शित किया जाता है तथा $\overrightarrow{ F }_{1}+\overrightarrow{ F }_{2}=-\overrightarrow{ F }_{3}$, तो तीनों बल संगामी होते है तथा संतुलन की दशा को प्रदर्शित करते हैं।
कथन $: II$
तीन बलों $\overrightarrow{ F }_{1}, \overrightarrow{ F }_{2}$ तथा $\overrightarrow{ F }_{3}$ को इसी क्रम में भुजाओं के रूप में लेकर बने एक त्रिभुज से स्थानांतरीय संतुलन की दशा प्रदर्शित होती हैं।
उपर्युक्त कथनों के अवलोकन में नीचे दिए गये विकल्पों से उपयुक्त उत्तर चुनिए।
यदि $\mathop A\limits^ \to = 4\hat i - 3\hat j$ तथा $\mathop B\limits^ \to = 6\hat i + 8\hat j$ तो $\mathop A\limits^ \to \, + \mathop B\limits^ \to $ का परिमाण तथा दिशा होगी
माना दो अशून्य सदिशों $\mathop A\limits^ \to $ व $\mathop B\limits^ \to $ के बीच कोण $120^°$ है तथा इनका परिणामी $\mathop C\limits^ \to $ है तो