Maximum height reached by an object projected perpendicular to the surface of the earth with a speed equal to $50\%$ of the escape velocity from earth surface is - ( $R =$ Radius of Earth)

  • A

    $\frac {R}{2}$

  • B

    $\frac {16R}{9}$

  • C

    $\frac {R}{3}$

  • D

    $\frac {R}{8}$

Similar Questions

A planet is revolving ground the sun in an elliptical orbit. Its closest distance from the sun is $r_{min}$, the farthest distance from the sun is $r_{max}$. If the orbital angular velocity of the planet when it is the nearest to the sun is $\omega $, then the orbital angular velocity at the point when it is at the farthest distance from the sun is 

Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F.$ The space around the masses is now filled with a liquid of specific gravity $3.$ The gravitational force will now be

A satellite is launched into a circular orbit of radius $R$ around earth, while a second satellite is launched into a circular orbit of radius $1.02\, {R}$. The percentage difference in the time periods of the two satellites is -

Given that mass of the earth is $M$ and its radius is $R$. A body is dropped from a height equal to the radius of the earth above the surface of the earth. When it reaches the ground its velocity will be

A body of mass $m$ is lifted up from the surface of the earth to a height three times the radius of the earth. The change in potential energy of the body is

where $g$ is acceleration due to gravity at the surface of earth.