The mass of planet is $\frac{1}{9}$ of the mass of the earth and its radius is half that of the earth. If a body weight $9\,N$ on the earth. Its weight on the planet would be ........ $N$
$6$
$4.5$
$4$
$9$
The magnitudes of gravitational field at distances $r_1$ and $r_2$ from the centre of a uniform sphere of radius $R$ and mass $M$ are $F_1$ and $F_2$ respectively. Then-
On a hypothetical planet satellite can only revolve in quantized energy level i.e. magnitude of energy of a satellite is integer multiple of a fixed energy. If two successive orbit have radius $R$ and $\frac{3R}{2}$ what could be maximum radius of satellite
Escape velocity at the surface of earth is $11.2\,km/sec$ . If radius of planet is double that of earth but mean density same as that of earth then the escape velocity will be ........ $km/sec$
Two stars of masses $m_1$ and $m_2$ are parts of a binary star system. The radii of their orbits are $r_1$ and $r_2$ respectively, measured from the centre of mass of the system. The magnitude of gravitational force $m_1$ exerts on $m_2$ is
A satellite can be in a geostationary orbit around a planet at a distance $r$ from the centre of the planet. If the angular velocity of the planet about its axis doubles, a satellite can now be in a geostationary orbit around the planet if its distance from the centre of the planet is