Maximum number of equivalence relations on set $A = \{1, 2, 3, 4\}$ is $N$, then -
$14 \leq N \leq 20$
$21 \leq N \leq 28$
$29 \leq N \leq 36$
$N \geq 37$
Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $A$ such that $\mathrm{R} \subset \mathrm{S}$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is...............
Let $A=\{2,3,6,7\}$ and $B=\{4,5,6,8\}$. Let $R$ be a relation defined on A $\times$ B by $\left(a_1, b_1\right) R\left(a_2, b_2\right)$ is and only if $a_1+a_2=b_1+b_2$. Then the number of elements in $\mathrm{R}$ is ...........
Among the relations $S =\left\{( a , b ): a , b \in R -\{0\}, 2+\frac{ a }{ b } > 0\right\}$ And $T =\left\{( a , b ): a , b \in R , a ^2- b ^2 \in Z \right\}$,
Let $I$ be the set of positve integers. $R$ is a relation on the set $I$ given by $R =\left\{ {\left( {a,b} \right) \in I \times I\,|\,\,{{\log }_2}\left( {\frac{a}{b}} \right)} \right.$ is a non-negative integer$\}$, then $R$ is
Let a relation $R$ on $\mathbb{N} \times \mathbb{N}$ be defined as : $\left(\mathrm{x}_1, \mathrm{y}_1\right) \mathrm{R}\left(\mathrm{x}_2, \mathrm{y}_2\right)$ if and only if $\mathrm{x}_1 \leq \mathrm{x}_2$ or $\mathrm{y}_1 \leq \mathrm{y}_2$
Consider the two statements :
($I$) $\mathrm{R}$ is reflexive but not symmetric.
($II$) $\mathrm{R}$ is transitive
Then which one of the following is true?