13.Statistics
hard

Mean and standard deviation of 100 items are 50 and $4,$ respectively. Then find the sum of all the item and the sum of the squares of the items.

Option A
Option B
Option C
Option D

Solution

Here, $\bar{x}=50, n=100$ and $\sigma=4$

$\therefore \quad \frac{\Sigma x_{i}}{100}=50$

$\Rightarrow \quad \Sigma x_{i}=5000$

$\text { and } \sigma^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}\right)^{2}$

$\Rightarrow \quad (4)^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{100}-(50)^{2}$

$\Rightarrow \quad 16=\frac{\Sigma f_{i} x_{i}^{2}}{100}-2500$

$\Rightarrow \frac{\Sigma f_{i} x_{i}^{2}}{100}=16+2500=2516$

$\Sigma f_{i} x_{i}^{2}=251600$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.