The mean and variance of eight observations are $9$ and $9.25,$ respectively. If six of the observations are $6,7,10,12,12$ and $13,$ find the remaining two observations.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the remaining two observations be $x$ and $y$.

Therefore, the observations are $6,7,10,12,12,13, x, y$

Mean, $\bar{x}=\frac{6+7+10+12+12+13+x+y}{8}=9$

$\Rightarrow 60+x+y=72$

$\Rightarrow x+y=12$        ...........$(1)$

Variance $ = 9.25 = \frac{1}{n}\sum\limits_{i = 1}^8 {{{\left( {{x_i} - \bar x} \right)}^2}} $

$9.25=\frac{1}{8}[(-3)^{2}+(-2)^{2}+(1)^{2}+(3)^{2}+(4)^{2}$

$+x^{2}+y^{2}-2 \times 9(x+y)+2 \times(9)^{2}]$

$9.25=\frac{1}{8}\left[9+4+1+9+9+16+x^{2}+y^{2}-18(12)+162\right]$        ........[ using $(1)$ ]

$9.25=\frac{1}{8}\left[48+x^{2}+y^{2}-216+162\right]$

$9.25=\frac{1}{8}\left[x^{2}+y^{2}-6\right]$

$\Rightarrow x^{2}+y^{2}=80$         .........$(2)$

From $(1),$ we obtain

$x^{2}+y^{2}+2 x y=144$        ........$(3)$

From $(2)$ and $(3),$ we obtain

$2 x y=64$      ..........$(4)$

Subtracting $(4)$ from $(2),$ we obtain

$x^{2}+y^{2}-2 x y=80-64=16$

$\Rightarrow x-y=\pm 4 $         ...........$(5)$

Therefore, from $(1)$ and $(5),$ we obtain

$x=8$ and $y=4,$ when $x-y=4$

$x=4$ and $y=8,$ when $x-y=-4$

Thus, the remaining observations are $4$ and $8$

Similar Questions

If the mean and variance of the following data:

$6,10,7,13, a, 12, b, 12$ are 9 and $\frac{37}{4}$ respectively, then $(a-b)^{2}$ is equal to:

  • [JEE MAIN 2021]

The varience of data $1001, 1003, 1006, 1007, 1009, 1010$ is -

The standard deviation of $25$ numbers is $40$. If each of the numbers is increased by $5$, then the new standard deviation will be

If the mean of the frequency distribution

Class: $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
Frequency $2$ $3$ $x$ $5$ $4$

is $28$ , then its variance is $........$.

  • [JEE MAIN 2023]

Find the mean and variance of the frequency distribution given below:

$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$