- Home
- Standard 11
- Mathematics
The mean and variance of eight observations are $9$ and $9.25,$ respectively. If six of the observations are $6,7,10,12,12$ and $13,$ find the remaining two observations.
$4,8$
$4,8$
$4,8$
$4,8$
Solution
Let the remaining two observations be $x$ and $y$.
Therefore, the observations are $6,7,10,12,12,13, x, y$
Mean, $\bar{x}=\frac{6+7+10+12+12+13+x+y}{8}=9$
$\Rightarrow 60+x+y=72$
$\Rightarrow x+y=12$ ………..$(1)$
Variance $ = 9.25 = \frac{1}{n}\sum\limits_{i = 1}^8 {{{\left( {{x_i} – \bar x} \right)}^2}} $
$9.25=\frac{1}{8}[(-3)^{2}+(-2)^{2}+(1)^{2}+(3)^{2}+(4)^{2}$
$+x^{2}+y^{2}-2 \times 9(x+y)+2 \times(9)^{2}]$
$9.25=\frac{1}{8}\left[9+4+1+9+9+16+x^{2}+y^{2}-18(12)+162\right]$ ……..[ using $(1)$ ]
$9.25=\frac{1}{8}\left[48+x^{2}+y^{2}-216+162\right]$
$9.25=\frac{1}{8}\left[x^{2}+y^{2}-6\right]$
$\Rightarrow x^{2}+y^{2}=80$ ………$(2)$
From $(1),$ we obtain
$x^{2}+y^{2}+2 x y=144$ ……..$(3)$
From $(2)$ and $(3),$ we obtain
$2 x y=64$ ……….$(4)$
Subtracting $(4)$ from $(2),$ we obtain
$x^{2}+y^{2}-2 x y=80-64=16$
$\Rightarrow x-y=\pm 4 $ ………..$(5)$
Therefore, from $(1)$ and $(5),$ we obtain
$x=8$ and $y=4,$ when $x-y=4$
$x=4$ and $y=8,$ when $x-y=-4$
Thus, the remaining observations are $4$ and $8$
Similar Questions
Calculate mean, variance and standard deviation for the following distribution.
Classes | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
${f_i}$ | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |