જો $100$ વસ્તુઓના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $50$ અને $4$ હોય તો બધી વસ્તુઓનો સરવાળો મેળવો અને બધી વસ્તુઓના વર્ગોનો સરવાળો મળવો
Here, $\bar{x}=50, n=100$ and $\sigma=4$
$\therefore \quad \frac{\Sigma x_{i}}{100}=50$
$\Rightarrow \quad \Sigma x_{i}=5000$
$\text { and } \sigma^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}\right)^{2}$
$\Rightarrow \quad (4)^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{100}-(50)^{2}$
$\Rightarrow \quad 16=\frac{\Sigma f_{i} x_{i}^{2}}{100}-2500$
$\Rightarrow \frac{\Sigma f_{i} x_{i}^{2}}{100}=16+2500=2516$
$\Sigma f_{i} x_{i}^{2}=251600$
$5$ અવલોકનોનો મધ્યક $7$ છે જો આ અવલોકનોમાંથી ચાર અવલોકનો $6, 7, 8, 10$ હોય તો બધા અવલોકનોનો વિચરણ મેળવો.
$112, 116, 120, 125, 132$ અવલોકનોનું વિચરણ = ……..
સંખ્યાઓ $a, b, 8, 5, 10 $ નો મધ્યક $6$ અને વિચરણ $6.80 $ હોય તો નીચે આપેલ પૈકી કઇ એક $a $ અને $b $ માટે શક્ય કિંમત છે ?
વીસ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $2$ છે.પુનઃતપાસ કરતાં માલૂમ પડ્યું કે અવલોકન $8$ ખોટું છે. ખોટા અવલોકનને દૂર કરવામાં આવે તો સાચો મધ્યક અને સાચું પ્રમાણિત વિચલન શોધો.
ધારો કે $x_1, x_2, ……, x_n $ એ $n$ અવલોકનો છે અને ધારો કે $\bar x$એ એમનો સમાંતર મધ્યક છે અને $\sigma^2$ એ તેમનું વિચરણ છે.
વિધાન $ - 1 : 2x_1, 2x_2, ……, 2x_n$ નું વિચરણ $4\sigma^2$ છે.
વિધાન $- 2 : 2x_1, 2x_2, ….., 2x_n$ નો સમાંતર મધ્યક $4\,\bar x$છે.