- Home
- Standard 11
- Mathematics
13.Statistics
hard
જો $100$ વસ્તુઓના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $50$ અને $4$ હોય તો બધી વસ્તુઓનો સરવાળો મેળવો અને બધી વસ્તુઓના વર્ગોનો સરવાળો મળવો
Option A
Option B
Option C
Option D
Solution
Here, $\bar{x}=50, n=100$ and $\sigma=4$
$\therefore \quad \frac{\Sigma x_{i}}{100}=50$
$\Rightarrow \quad \Sigma x_{i}=5000$
$\text { and } \sigma^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}\right)^{2}$
$\Rightarrow \quad (4)^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{100}-(50)^{2}$
$\Rightarrow \quad 16=\frac{\Sigma f_{i} x_{i}^{2}}{100}-2500$
$\Rightarrow \frac{\Sigma f_{i} x_{i}^{2}}{100}=16+2500=2516$
$\Sigma f_{i} x_{i}^{2}=251600$
Standard 11
Mathematics
Similar Questions
અહી $\mathrm{X}$ એ વિતરણનું યાર્દચ્છિક ચલ છે.
$\mathrm{x}$ | $-2$ | $-1$ | $3$ | $4$ | $6$ |
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{5}$ | $\mathrm{a}$ | $\frac{1}{3}$ | $\frac{1}{5}$ | $\mathrm{~b}$ |
જો મધ્યક $X$ એ $2.3$ અને $X$ નું વિચરણ $\sigma^{2}$ હોય તો $100 \sigma^{2}$ ની કિમંત મેળવો.