Two infinitely long parallel wires having linear charge densities ${\lambda _1}$ and ${\lambda _2}$ respectively are placed at a distance of $R$ metres. The force per unit length on either wire will be $\left( {K = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$

  • A

    $K\frac{{2{\lambda _1}{\lambda _2}}}{{{R^2}}}$

  • B

    $K\frac{{2{\lambda _1}{\lambda _2}}}{R}$

  • C

    $K\frac{{{\lambda _1}{\lambda _2}}}{{{R^2}}}$

  • D

    $K\frac{{{\lambda _1}{\lambda _2}}}{R}$

Similar Questions

An infinitely long solid cylinder of radius $R$ has a uniform volume charge density $\rho $. It has a spherical cavity of radius $R/2$ with its centre on the axis of the cylinder, as shown in the figure. The magnitude of the electric field at the point $P$, which is at a distance $2R$ from the axis of the cylinder, is given by the expression $\frac{{23\rho R}}{{16K{\varepsilon _0}}}$ .The value of $K$ is

Consider a metal sphere of radius $R$ that is cut in two parts along a plane whose minimum distance from the sphere's centre is $h$. Sphere is uniformly charged by a total electric charge $Q$. The minimum force necessary to hold the two parts of the sphere together, is

Consider a sphere of radius $\mathrm{R}$ which carries a uniform charge density $\rho .$ If a sphere of radius $\frac{\mathrm{R}}{2}$ is carved out of it, as shown, the ratio $\frac{\left|\overrightarrow{\mathrm{E}}_{\mathrm{A}}\right|}{\left|\overrightarrow{\mathrm{E}}_{\mathrm{B}}\right|}$ of magnitude of electric field $\overrightarrow{\mathrm{E}}_{\mathrm{A}}$ and $\overrightarrow{\mathrm{E}}_{\mathrm{B}}$ respectively, at points $\mathrm{A}$ and $\mathrm{B}$ due to the remaining portion is

  • [JEE MAIN 2020]

An infinitely long solid cylinder of radius $R$ has a uniform volume charge density $\rho$. It has a spherical cavity of radius $R / 2$ with its centre on the axis of the cylinder, as shown in the figure. The magnitude of the electric field at the point $P$, which is at a distance $2 \ R$ from the axis of the cylinder, is given by the expression $\frac{23 \rho R }{16 k \varepsilon_0}$. The value of $k$ is

  • [IIT 2012]

Electric field intensity at a point in between two parallel sheets with like charges of same surface charge densities $(\sigma )$ is