3-2.Motion in Plane
medium

Motion of a particle in $x - y$ plane is described by a set of following equations $x=4 \sin \left(\frac{\pi}{2}-\omega t\right) m$ and $y=4 \sin (\omega t) m$. The path of particle will be 

A

circular

B

helical

C

parabolic

D

elliptical

(JEE MAIN-2022)

Solution

$x=4 \sin \left(\frac{\pi}{2}-\omega t\right) y=4 \cos (\omega t)$

$x=4 \cos (\omega t) \quad y=4 \sin (\omega t)$

Eliminate ' $t$ ' to find relation between $x$ and $y$

$x^{2}+y^{2}=y^{2} \cos ^{2} \omega t+y^{2} \sin ^{2} \omega t=4^{2}$

$x^{2}+y^{2}=4^{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.