Starting from the origin at time $t=0,$ with initial velocity $5 \hat{ j }\, ms ^{-1},$ a particle moves in the $x-y$ plane with a constant acceleration of $(10 \hat{ i }+4 \hat{ j })\, ms ^{-2}$. At time $t$, its coordinates are $\left(20\, m , y _{0}\, m \right) .$ The values of $t$ and $y _{0},$ are respectively
$4\, s$ and $52\, m$
$2\, s$ and $24\, m$
$2\,s$ and $18\, m$
$5\, s$ and $25\, m$
and direction of the vectors $\hat{ i }+\hat{ j }$, and $\hat{ i }-\hat{ j }$ ? What are the components of a vector $A =2 \hat{ i }+3 \hat{ j }$ along the directions of $\hat{ i }+\hat{ j }$ and $\hat{ i }-\hat{ j } ?$
A point moves in $x-y$ plane as per $x=kt,$ $y = kt\left( {1 - \alpha t} \right)$ where $k\,\& \,\alpha \,$ are $+ve$ constants. The equation of trajectory is
The velocity- time graph of a body falling from rest under gravity and rebounding from a solid surface is represented by which of the following graphs?