Let $*, \square \in\{\wedge, \vee\}$ be such that the Boolean expression $(\mathrm{p} * \sim \mathrm{q}) \Rightarrow(\mathrm{p} \square \mathrm{q})$ is a tautology. Then :
$*=\vee, \square=\vee$
$*=\wedge, \square=\wedge$
$*=\wedge, \square=\vee$
$*=\vee, \square=\wedge$
$\sim p \wedge q$ is logically equivalent to
If $p, q, r$ are simple propositions, then $(p \wedge q) \wedge (q \wedge r)$ is true then
Negation of the compound proposition : If the examination is difficult, then I shall pass if I study hard
Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $
Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology
Negation of $p \wedge( q \wedge \sim( p \wedge q ))$ is