Let $*, \square \in\{\wedge, \vee\}$ be such that the Boolean expression $(\mathrm{p} * \sim \mathrm{q}) \Rightarrow(\mathrm{p} \square \mathrm{q})$ is a tautology. Then :

  • [JEE MAIN 2021]
  • A

    $*=\vee, \square=\vee$

  • B

    $*=\wedge, \square=\wedge$

  • C

    $*=\wedge, \square=\vee$

  • D

    $*=\vee, \square=\wedge$

Similar Questions

$\sim p \wedge q$ is logically equivalent to

If $p, q, r$ are simple propositions, then $(p \wedge q) \wedge (q \wedge r)$ is true then

Negation of the compound proposition : If the examination is difficult, then I shall pass if I study hard

Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $

Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology

  • [AIEEE 2009]

Negation of $p \wedge( q \wedge \sim( p \wedge q ))$ is

  • [JEE MAIN 2023]