No current flows between two charged bodies connected together when they have the same
Capacitance or $\frac{Q}{V}$ ratio
Charge
Resistance
Potential or $\frac{Q}{C}$ ratio
The capacitance $(C)$ for an isolated conducting sphere of radius $(a)$ is given by $4\pi \varepsilon_0a$. If the sphere is enclosed with an earthed concentric sphere. The ratio of the radii of the spheres $\frac{n}{{(n - 1)}}$ being then the capacitance of such a sphere will be increased by a factor
A $500\,\mu F$ capacitor is charged at a steady rate of $100\, \mu C/sec$. The potential difference across the capacitor will be $10\, V$ after an interval of.....$sec$
A $30\,\mu F$ capacitor is charged by a constant current of $30\, mA$. If the capacitor is initially uncharged, how long does it take for the potential difference to reach $400\, V$.....$s$
A $500 \,\mu F$ capacitor is charged at a steady rate of $100\, \mu C/sec$. The potential difference across the capacitor will be $10\, V$ after an interval of.....$sec$
Two capacitors $C_1$ and $C_2$ are charged to $120\ V$ and $200\ V$ respectively. It is found that connecting them together the potential on each one can be made zero. Then