Number of points on the ellipse $\frac{x^2}{50} + \frac{y^2}{20} = 1$ from which pair of perpendicular tangents are drawn to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is :-
$0$
$2$
$1$
$4$
If the maximum distance of normal to the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$, from the origin is $1$ , then the eccentricity of the ellipse is:
Let $f(x)=x^2+9, g(x)=\frac{x}{x-9}$ and $\mathrm{a}=\mathrm{fog}(10), \mathrm{b}=\operatorname{gof}(3)$. If $\mathrm{e}$ and $1$ denote the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{a}+\frac{y^2}{b}=1$, then $8 e^2+1^2$ is equal to.
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
For the ellipse $25{x^2} + 9{y^2} - 150x - 90y + 225 = 0$ the eccentricity $e = $
A chord $PQ$ of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ subtends right angle at its centre. The locus of the point of intersection of tangents drawn at $P$ and $Q$ is-