Eccentricity of the ellipse $9{x^2} + 25{y^2} = 225$ is
$\frac{3}{5}$
$\frac{4}{5}$
$\frac{9}{{25}}$
$\frac{{\sqrt {34} }}{5}$
Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(±3,\,0)$ ends of minor axis $(0,\,±2)$
If the normal at any point $P$ on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ meets the co-ordinate axes in $G$ and $g$ respectively, then $PG:Pg = $
Let $L$ be a common tangent line to the curves $4 x^{2}+9 y^{2}=36$ and $(2 x)^{2}+(2 y)^{2}=31$. Then the square of the slope of the line $L$ is ..... .
Define the collections $\left\{ E _1, E _2, E _3, \ldots ..\right\}$ of ellipses and $\left\{ R _1, K _2, K _3, \ldots ..\right\}$ of rectangles as follows : $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$
$K _1$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _1$;
$E_n$ : ellipse $\frac{x^2}{a_n^2}+\frac{y^2}{b_{n}^2}=1$ of largest area inscribed in $R_{n-1}, n>1$;
$R _{ n }$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _{ n }, n >1$.
Then which of the following options is/are correct?
$(1)$ The eccentricities of $E _{18}$ and $E _{19}$ are NOT equal
$(2)$ The distance of a focus from the centre in $E_9$ is $\frac{\sqrt{5}}{32}$
$(3)$ The length of latus rectum of $E_Q$ is $\frac{1}{6}$
$(4)$ $\sum_{n=1}^N\left(\right.$ area of $\left.R_2\right)<24$, for each positive integer $N$
The length of the latus rectum of the ellipse $9{x^2} + 4{y^2} = 1$, is