If the points of intersection of two distinct conics $x^2+y^2=4 b$ and $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ lie on the curve $y^2=3 x^2$, then $3 \sqrt{3}$ times the area of the rectangle formed by the intersection points is............................
$432$
$456$
$123$
$789$
The locus of the point of intersection of the perpendicular tangents to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ is
A vertical line passing through the point $(h, 0)$ intersects the ellipse $\frac{x^2}{4}+\frac{y^2}{3}=1$ at the points $P$ and $Q$. Let the tangents to the ellipse at $P$ and $Q$ meet at the point $R$. If $\Delta(h)=$ area of the triangle $P Q R, \Delta_1=\max _{1 / 2 \leq h \leq 1} \Delta(h)$ and $\Delta_2=\min _{1 / 2 \leq h \leq 1} \Delta(h)$, then $\frac{8}{\sqrt{5}} \Delta_1-8 \Delta_2=$
If two tangents drawn from a point $(\alpha, \beta)$ lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ equals
The lengths of major and minor axis of an ellipse are $10$ and $8$ respectively and its major axis along the $y$ - axis. The equation of the ellipse referred to its centre as origin is
Let $P$ is any point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ . $S_1$ and $S_2$ its foci then maximum area of $\Delta PS_1S_2$ is (in square units)