Number of solution of the equation $ 3tanx + x^3 = 2 $  in $ \left( {0,\frac{\pi }{4}} \right)$ is

  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $3$

Similar Questions

Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?

$f(x)=x^{2}-1$ for $x \in[1,2]$

Let $f (x)$ and $g (x)$ be two continuous functions defined from $R \rightarrow R$, such that $f (x_1) > f (x_2)$ and $g (x_1) < g (x_2), \forall x_1 > x_2$ , then solution set of $f\,\left( {\,g({\alpha ^2} - 2\alpha )\,} \right) >f\,\left( {\,g(3\alpha - 4)\,} \right)$ is

The function $f(x) = {(x - 3)^2}$ satisfies all the conditions of mean value theorem in $[3, 4].$ A point on $y = {(x - 3)^2}$, where the tangent is parallel to the chord joining $ (3, 0)$  and $(4, 1)$  is

Let $f$ and $g$ be real valued functions defined on interval $(-1,1)$ such that $g^{\prime \prime}(x)$ is continuous, $g(0) \neq 0, g^{\prime}(0)=0, g^{\prime \prime}(0) \neq$ 0 , and $f(x)=g(x) \sin x$.

$STATEMENT$ $-1: \lim _{x \rightarrow 0}[g(x) \cot x-g(0) \operatorname{cosec} x]=f^{\prime \prime}(0)$.and

$STATEMENT$ $-2: f^{\prime}(0)=g(0)$.

  • [IIT 2008]

Let $y = f (x)$ and $y = g (x)$ be two differentiable function in $[0,2]$ such that  $f(0) = 3,$ $f(2) = 5$ , $g (0) = 1$ and $g(2) = 2$. If there exist atlellst one $c \in \left( {0,2} \right)$ such that $f'(c)=kg'(c)$,then $k$ must be