- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
easy
If $f(x) = \cos x,0 \le x \le {\pi \over 2}$, then the real number $ ‘c’ $ of the mean value theorem is
A
${\pi \over 6}$
B
${\pi \over 4}$
C
${\sin ^{ - 1}}\left( {{2 \over \pi }} \right)$
D
${\cos ^{ - 1}}\left( {{2 \over \pi }} \right)$
Solution
(c) We know that $f'(c) = \frac{{f(b) – f(a)}}{{b – a}}$
$ \Rightarrow f'(c) = \frac{{0 – 1}}{{\pi /2}} = – \frac{2}{\pi }$…..$(i)$
But $f'(x) = – \sin x \Rightarrow f'(c) = – \sin c$….$(ii)$
From $(i)$ and $(ii),$ we get $ – \sin c = – \frac{2}{\pi } \Rightarrow c = {\sin ^{ – 1}}\left( {\frac{2}{\pi }} \right)$.
Standard 12
Mathematics