Let $f$ be any function defined on $R$ and let it satisfy the condition

$|f( x )-f( y )| \leq\left|( x - y )^{2}\right|, \forall( x , y ) \in R$ If $f(0)=1,$ then

  • [JEE MAIN 2021]
  • A

    $f(x)$ can take any value in $R$

  • B

    $f(x)< 0, \forall \,x \in R$

  • C

    $f( x )=0, \forall \, x \in R$

  • D

    $f( x )>0, \forall \, x \in R$

Similar Questions

The number of polynomials $p: R \rightarrow R$ satisfying $p(0)=0, p(x)>x^2$ for all $x \neq 0$ and $p^{\prime \prime}(0)=\frac{1}{2}$ is

  • [KVPY 2018]

Let $f(x) = (x-4)(x-5)(x-6)(x-7)$ then -

Rolle's theorem is not applicable to the function $f(x) = |x|$ defined on $ [-1, 1] $ because

Suppose that $f$ is differentiable for all $x$ and that $f '(x) \le 2$ for all x. If $f (1) = 2$ and $f (4) = 8$ then $f (2)$ has the value equal to

Let $f(x) = 8x^3 - 6x^2 - 2x + 1,$ then