Let $f$ be any function defined on $R$ and let it satisfy the condition
$|f( x )-f( y )| \leq\left|( x - y )^{2}\right|, \forall( x , y ) \in R$ If $f(0)=1,$ then
$f(x)$ can take any value in $R$
$f(x)< 0, \forall \,x \in R$
$f( x )=0, \forall \, x \in R$
$f( x )>0, \forall \, x \in R$
The number of polynomials $p: R \rightarrow R$ satisfying $p(0)=0, p(x)>x^2$ for all $x \neq 0$ and $p^{\prime \prime}(0)=\frac{1}{2}$ is
Let $f(x) = (x-4)(x-5)(x-6)(x-7)$ then -
Rolle's theorem is not applicable to the function $f(x) = |x|$ defined on $ [-1, 1] $ because
Suppose that $f$ is differentiable for all $x$ and that $f '(x) \le 2$ for all x. If $f (1) = 2$ and $f (4) = 8$ then $f (2)$ has the value equal to
Let $f(x) = 8x^3 - 6x^2 - 2x + 1,$ then