- Home
- Standard 11
- Mathematics
Trigonometrical Equations
normal
Number of values of $x$ satisfying $2sin^22x = 2cos^28x + cos10x$ in $x \in \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$ is-
A
$10$
B
$12$
C
$14$
D
$16$
Solution
$cos16x + cos10x + cos4x = 0$
$cos10x + 2 cos10x cos6x = 0$
$cos10x = 0$ or $cos6x =-\frac{1}{2}$
$x = (2n-1)\frac{\pi }{20}$ or $x = \frac{n\pi }{3} \pm \frac{\pi }{9},n \in I$
$\therefore$ Total number of values $= 10$
Standard 11
Mathematics