Number of values of $x$ satisfying $2sin^22x = 2cos^28x + cos10x$ in $x  \in \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$ is-
 

  • A

    $10$

  • B

    $12$

  • C

    $14$

  • D

    $16$

Similar Questions

If $\alpha ,$ $\beta$ are different values of $x$ satisfying $a\cos x + b\sin x = c,$ then $\tan {\rm{ }}\left( {\frac{{\alpha + \beta }}{2}} \right) = $

The equation $\sqrt 3 \sin x + \cos x = 4$ has

The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is

If  $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ and $x$ is the solution of the equatioin $y = 2\left[ x \right] + 2$ and $y = 3\left[ {x - 2} \right] ,$ where $\left[ x \right]$ denotes the integral part of $x,$ then $a$ is equal to :-

The sum of all $x \in[0, \pi]$ which satisfy the equation $\sin x+\frac{1}{2} \cos x=\sin ^2\left(x+\frac{\pi}{4}\right)$ is

  • [KVPY 2012]