$m$ ની કેટલી કિમંતો માટે રેખાઓ $x + y - 1 = 0$, $(m - 1) x + (m^2 - 7) y - 5 = 0 \,\,\&\,\, (m - 2) x + (2m - 5) y = 0$ ઓ સંગામી થાય.
$0$
$1$
$2$
$3$
જો $\left| {\,\begin{array}{*{20}{c}}{1 + ax}&{1 + bx}&{1 + cx}\\{1 + {a_1}x}&{1 + {b_1}x}&{1 + {c_1}x}\\{1 + {a_2}x}&{1 + {b_2}x}&{1 + {c_2}x}\end{array}\,} \right|,$ $ = {A_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3}$ તો ${A_1}$ =
જો ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r - 2} \\
{\frac{n}{2}}&{n - 1}&a \\
{\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)}
\end{array}} \right|$ તો $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $ ની કિમત . . .
જો રેખાઓ $x + 2ay + a = 0, x + 3by + b = 0$ અને $x + 4cy + c = 0$ એ સંગામી રેખાઓ હોય તો $a, b$ અને $c$ એ .. .. શ્રેણીમાં હોય .
સમીકરણની સંહતિ $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ નો ઉકેલ ખાલીગણ હોય તો $\alpha $ કિમત મેળવો.
$\left| {\,\begin{array}{*{20}{c}}{bc}&{bc' + b'c}&{b'c'}\\{ca}&{ca' + c'a}&{c'a'}\\{ab}&{ab' + a'b}&{a'b'}\end{array}\,} \right|$ = . . .