Obtain the expression of electric field by charged spherical shell on a point outside it.
Consider a uniformly charged sphere of radius $\mathrm{R}$ having the charge density $\rho$.
Gauss's law is $\int \overrightarrow{\mathrm{E}} \cdot \overrightarrow{d a}=\frac{q}{\varepsilon_{0}}$
Here we imagine one spherical Gaussian surface of radius $r$ which is greater than $R .(r>R)$ Total flux passing through the surface $=4 \pi \mathrm{r}^{2} \mathrm{E}(\mathrm{r})$
Total charge enclosed $q=\frac{4 \pi}{3} \mathrm{R}^{3} \frac{\rho}{\varepsilon_{0}}$
$\therefore 4 \pi r^{2} \mathrm{E}(\mathrm{r})=\frac{4}{3} \pi \mathrm{R}^{3} \frac{\rho}{\varepsilon_{0}}$
$\therefore \mathrm{E}(\mathrm{r})=\frac{\mathrm{R}^{3} \rho}{3 \rho^{2} \varepsilon_{0}}(r>\mathrm{R})$
$\text { This equation gives the valu }$
This equation gives the value of the electric field for the points lying in the region outside the sphere at a distance $r$ from the centre of the sphere $(r>\mathrm{R})$.
Total charge of the sphere $Q=\frac{4}{3} \pi r^{3} \rho$
$\therefore \rho=\frac{3 Q}{4 \pi R^{3}}$
Using this in above equation,
$\therefore \mathrm{E}(\mathrm{r})=\frac{\mathrm{R}^{3}}{3 \mathrm{r}^{2} \epsilon_{0}} \cdot \frac{3 \mathrm{Q}}{4 \pi \mathrm{R}^{3}}$
$\therefore \mathrm{E}(\mathrm{r})=\frac{\mathrm{Q}}{4 \pi \epsilon_{0}} \cdot \frac{1}{\mathrm{r}^{2}}$
Thus, for a point outside the sphere the entire charge of the sphere can be treated as concentrated at its centre.
An infinitely long solid cylinder of radius $R$ has a uniform volume charge density $\rho $. It has a spherical cavity of radius $R/2$ with its centre on the axis of the cylinder, as shown in the figure. The magnitude of the electric field at the point $P$, which is at a distance $2R$ from the axis of the cylinder, is given by the expression $\frac{{23\rho R}}{{16K{\varepsilon _0}}}$ .The value of $K$ is
The region between two concentric spheres ofradii '$a$' and '$b$', respectively (see figure), have volume charge density $\rho = \frac{A}{r}$ where $A$ is a constant and $r$ is the distance from the centre. At the centre of the spheres is a point charge $Q$. The value of $A$ such that the electric field in the region between the spheres will be constant, is :
An electrostatic field in a region is radially outward with magnitude $E$ = $\alpha r$ , where $\alpha $ is a constant and $r$ is radial distance. The charge contained in a sphere of radius $R$ in this region (centred at the origin) is
Let there be a spherically symmetric charge distribution with charge density varying as $\rho (r)=\;\rho _0\left( {\frac{5}{4} - \frac{r}{R}} \right)$, upto $r = R$ ,and $\rho (r) = 0$ for $r > R$ , where $r$ is the distance from the origin. The electric field at a distance $r(r < R)$ from the origin is given by
A long charged cylinder of linear charged density $\lambda$ is surrounded by a hollow co-axial conducting cylinder. What is the electric field in the space between the two cylinders?