On a new scale of temperature (which is linear) and called the $W\, scale$, the freezing and boiling points of water are $39\,^oW$ and $239\,^oW$ respectively. What will be th temperature on the new scale, corresponding to a temperature of $39\,^oC$ on the Celsius scale? ............ $^\circ \mathrm{W}$

  • A

    $200$

  • B

    $139$

  • C

    $78$

  • D

    $117$

Similar Questions

A metal rod of silver at $0°C$ is heated to $100°C$. It's length is increased by $0.19\, cm$. Coefficient of cubical expansion of the silver rod is

A lead bullet at $27\,^oC$ just melts when stopped by an obstacle. Assuming that $25\%$ of heat is absorbed by the obstacle, then the velocity of the bullet at the time of striking ........ $m/s$ ( $M. P.$ of lead $= 327\,^oC,$ specific heat of lead $= 0.03\,cal/g\,^oC,$ latent heat of fusion of lead $= 6\,cal/g$ and $J = 4.2\,joule/cal$ )

Two large holes are cut in a metal sheet. If this is heated, distances $AB$ and $BC$, (as shown)

The rods of length $L_1$ and $L_2$ are made of materials whose coefficients of linear expansion are $\alpha _1$ and $\alpha _2$. If the difference between the two lengths is independent of temperatures

A small quantity, mass $m$ , of water at a temperature $\theta $ (in $^oC$ ) is poured on to a large mass $M$ of ice which is at its melting point. If $c$ is the specific heat of water and $L$ the latent heat of fusion of ice, then the mass of ice melted is given by