Gujarati
6-2.Equilibrium-II (Ionic Equilibrium)
normal

On decreasing the $p \mathrm{H}$ from $7$ to $2$ , the solubility of a sparingly soluble salt ($MX$) of a weak acid ($HX$) increased from $10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ to $10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$. The $p \mathrm{~K}_{\mathrm{s}}$ of $\mathrm{HX}$ is:

A

$3$

B

$4$

C

$5$

D

$2$

(IIT-2023)

Solution

At $\mathrm{pH}=7 \Rightarrow$ pure water

solubility $=\mathrm{S}_1=\sqrt{\mathrm{K}_{>p}}$

At $\mathrm{pH}=2$

$\Rightarrow \mathrm{MX}(\mathrm{s})+\mathrm{aq} \stackrel{\mathrm{K}_{\mathrm{sp}}}{\rightleftharpoons} \mathrm{M}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq})$

$5 \quad 5-\mathrm{x}$

$\mathrm{X}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \stackrel{1 / \mathrm{K},}{\rightleftharpoons} \mathrm{HX}(\mathrm{aq})$

$5-x \quad 10^{-2} \quad x=5$

Approximation : $5-x=0\left[\mathrm{X}^{-}\right.$is limiting reagent]

$\Rightarrow 5=x$

$\Rightarrow  s(5-x)=K_{\infty}$       $. . . . . . .(1)$

$\frac{5}{(s-x)\left(10^{-2}\right)}=\frac{1}{K_2}$         $. . . . . . .(2)$

Multiply (1) $\times(2) \Rightarrow \frac{s^2}{10^{-2}}=\frac{\mathrm{K}_{\mathrm{up}}}{\mathrm{K}_{\mathrm{a}}}$

$\Rightarrow s=\frac{\sqrt{\mathrm{K}_{s p}}}{10 \sqrt{\mathrm{K}_v}}$

Now given : $\frac{5}{s_1}=\frac{10^{-3}}{10^{-4}}$

$\frac{\frac{\sqrt{\mathrm{K}_{\Delta p}}}{10 \sqrt{\mathrm{K}_a}}}{\sqrt{\mathrm{K}_{\varphi}}}=10  \Rightarrow \frac{1}{10 \sqrt{\mathrm{K}_{\mathrm{a}}}}=10$

$\Rightarrow \sqrt{\mathrm{K}_2}=10^{-2}$

$\Rightarrow \mathrm{K}_{\mathrm{s}}=10^{-4}$

$\Rightarrow p \mathrm{~K}_a=4$

Standard 11
Chemistry

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.