- Home
- Standard 11
- Chemistry
Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at $298 \,K$ from their solubility product constants given in. Determine also the molarities of individual ions.
Solution
$(1)$ Silver chromate:
$Ag _{2} CrO _{4} \longrightarrow 2 Ag ^{+}+ CrO _{4}^{2-}$
Then,
${K_{sp}} = {\left[ {A{g^ + }} \right]^2}\left[ {CrO_4^{2 – }} \right]$
Let the solubility of $Ag _{2} CrO _{4}$ bes.
$\Rightarrow\left[ Ag ^{+}\right] 2 s$ and $\left[ CrO _{4}^{2-}\right]=s$
Then
$K_{s p}=(2 s)^{2} s=4 s^{3}$
$\Rightarrow 1.1 \times 10^{-12}=4 s^{3}$
$.275 \times 10^{-12}=s^{3}$
$s=0.65 \times 10^{-4} \,M$
Molarity of $Ag ^{+}$ $=2 s=2 \times 0.65 \times 10^{-4}=1.30 \times 10^{-4}\, M$
Molarity of $CrO _{4}^{2-}$ $=s=0.65 \times 10^{-4} \,M$
$(2)$ Barium chromate:
$BaCrO _{4} \longrightarrow Ba ^{2+}+ CrO _{4}^{2-}$
Then, $K_{s p}=\left[ Ba ^{2+}\right]\left[ CrO _{4}^{2-}\right]$
Let the solubility of $BaCrO _{4}$. be s.
So , $\quad\left[ Ba ^{2+}\right]= s$ and $\left[ CrO _{4}^{2-}\right]= s$
$\Rightarrow K_{S P}=s^{2}$
$\Rightarrow 1.2 \times 10^{-10}=s^{2}$
$\Rightarrow s=1.09 \times 10^{-5}\, M$
Molarity of $\quad Ba ^{2+}=$ Molarity of $CrO _{4}^{2-}=s=1.09 \times 10^{-5} \,M$
$(3)$ Ferric hydroxide:
$Fe ( OH )_{3} \longrightarrow Fe ^{2+}+3 OH$
$K_{s p}=\left[ Fe ^{2+}\right]\left[ OH ^{-}\right]^{3}$
Let s be the solubility of $\operatorname{Fe}( OH )_{3}$
Thus, $\left[ Fe ^{3+}\right]=s$ and $\left[ OH ^{-}\right]=3 s$
$\Rightarrow K_{s p}=s \cdot(3 s)^{3}$
$\quad=s .27 s^{3}$
$K_{s p}=27 s^{4}$
$1.0 \times 10^{-38}=27 s^{4}$
$.037 \times 10^{-38}=s^{4}$
$.00037 \times 10^{-36}=s^{4}$ $\Rightarrow 1.39 \times 10^{-10} \,M = S$
Molarity of $Fe ^{3+}=s=1.39 \times 10^{-10} \,M$
Molarity of $OH ^{-}=3 s=4.17 \times 10^{-10} \,M$
$(4)$ Lead chloride:
$PbCl _{2} \longrightarrow Pb ^{2+}+2 Cl ^{-}$
$K_{S P}=\left[P b^{2+}\right]\left[C l^{-}\right]^{2}$
Let $K_{S P}$ be the solubility of $PbCl _{2}$
$\left[ PB ^{2+}\right]=s$ and $\left[ Cl ^{-}\right]=2 s$
Thus, $K_{x p}=s .(2 s)^{2}$
$=4 s$
$\Rightarrow 1.6 \times 10^{-5}=4 s^{3}$
$\Rightarrow 0.4 \times 10^{-5}=s^{3}$
$4 \times 10^{-6}=s^{3} \Rightarrow 1.58 \times 10^{-2} \,M = S .1$
Molarity of $P B^{2+}=s=1.58 \times 10^{-2} \,M$
Molarity of chloride $=2 s=3.16 \times 10^{-2}\, M$
$(5)$ Mercurous iodide:
$Hg _{2} I _{2} \longrightarrow Hg ^{2+}+2 I ^{-}$
$K_{s p}=\left[ Hg _{2}^{2+}\right]^{2}\left[ I ^{-}\right]^{2}$
Let s be the solubility of $Hg _{2} I _{2}$
$\Rightarrow\left[ Hg _{2}^{2+}\right]=s$ and $\left[ I ^{-}\right]=2 s$
Thus, ${K_{sp}} = s{(2s)^2} \Rightarrow {K_{sq}} = 4{s^3}$
$4.5 \times 10^{-29}=4 s^{3}$
$1.125 \times 10^{-29}=s^{3}$
$\Rightarrow s=2.24 \times 10^{-10} \,M$
Molarity of $Hg _{2}^{2+}=s=2.24 \times 10^{-10}\, M$
Molarity of $I^{-}=2 s=4.48 \times 10^{-10} \,M$