A cylindrical rod having temperature ${T_1}$ and ${T_2}$ at its ends. The rate of flow of heat is ${Q_1}$ $cal/sec$. If all the linear dimensions are doubled keeping temperature constant then rate of flow of heat ${Q_2}$ will be
Two identical rods of copper and iron are coated with wax uniformly. When one end of each is kept at temperature of boiling water, the length upto which wax melts are $8.4cm$ and $4.2cm$ respectively. If thermal conductivity of copper is $0.92$ , then thermal conductivity of iron is
A deep rectangular pond of surface area $A,$ containing water (denstity $=\rho,$ specific heat capactly $=s$ ), is located In a region where the outside air temperature is at a steady value of $-26^{\circ} {C}$. The thickness of the frozen ice layer In this pond, at a certaln Instant Is $x$.
Taking the thermal conductivity of Ice as ${K}$, and its specific latent heat of fusion as $L$, the rate of Increase of the thickness of ice layer, at this instant would be given by
One likes to sit under sunshine in winter season, because
Which of the following factors affect the thermal conductivity of a rod?