One end of a spring of force constant k is fixed to a vertical wall and the other to a block of mass m resting on a smooth horizontal surface. There is another wall at a distance ${x_0}$ from the black. The spring is then compressed by $2{x_0}$ and released. The time taken to strike the wall is
$\frac{1}{6}\pi \sqrt {\frac{k}{m}} $
$\sqrt {\frac{k}{m}} $
$\frac{{2\pi }}{3}\sqrt {\frac{m}{k}} $
$\frac{\pi }{4}\sqrt {\frac{k}{m}} $
A spring having with a spring constant $1200\; N m ^{-1}$ is mounted on a hortzontal table as shown in Figure A mass of $3 \;kg$ is attached to the free end of the spring. The mass is then pulled sideways to a distance of $2.0 \;cm$ and released
let us take the position of mass when the spring is unstreched as $x=0,$ and the direction from left to right as the positive direction of $x$ -axis. Give $x$ as a function of time $t$ for the oscillating mass if at the moment we start the stopwatch $(t=0),$ the mass is
$(a)$ at the mean position,
$(b)$ at the maximum stretched position, and
$(c)$ at the maximum compressed position. In what way do these functions for $SHM$ differ from each other, in frequency, in amplitude or the inittal phase?
The frequency of oscillation of the springs shown in the figure will be
What is condition for a body suspended at the end of a spring having simple harmonic oscillation ?
A man weighing $60\ kg$ stands on the horizontal platform of a spring balance. The platform starts executing simple harmonic motion of amplitude $0.1\ m$ and frequency $\frac{2}{\pi } Hz$. Which of the following staements is correct
If a spring has time period $T$, and is cut into $n$ equal parts, then the time period of each part will be