The vertical extension in a light spring by a weight of $1\, kg$ suspended from the wire is $9.8\, cm$. The period of oscillation
$20\pi \sec $
$2\pi \sec $
$2\pi /10\sec $
$200\pi \sec $
When a particle of mass $m$ is attached to a vertical spring of spring constant $k$ and released, its motion is described by $y ( t )= y _{0} \sin ^{2} \omega t ,$ where $'y'$ is measured from the lower end of unstretched spring. Then $\omega$ is
The total spring constant of the system as shown in the figure will be
A spring having with a spring constant $1200\; N m ^{-1}$ is mounted on a hortzontal table as shown in Figure A mass of $3 \;kg$ is attached to the free end of the spring. The mass is then pulled sideways to a distance of $2.0 \;cm$ and released
let us take the position of mass when the spring is unstreched as $x=0,$ and the direction from left to right as the positive direction of $x$ -axis. Give $x$ as a function of time $t$ for the oscillating mass if at the moment we start the stopwatch $(t=0),$ the mass is
$(a)$ at the mean position,
$(b)$ at the maximum stretched position, and
$(c)$ at the maximum compressed position. In what way do these functions for $SHM$ differ from each other, in frequency, in amplitude or the inittal phase?
A spring is stretched by $0.20\, m$, when a mass of $0.50\, kg$ is suspended. When a mass of $0.25\, kg$ is suspended, then its period of oscillation will be .... $\sec$ $(g = 10\,m/{s^2})$
Identify correct statement among the following