One mole of an ideal gas $(\gamma = 1.4)$ is adiabatically compressed so that its temperature rises from $27\,^oC$ to $35\,^oC$. The change in the internal energy of the gas is .... $J$ (given $R = 8.3 \,J/mole/K$)
$-166$
$166$
$-168$
$168$
The equation of state for a gas is given by $PV = nRT + \alpha V$, where $n$ is the number of moles and $\alpha $ is a positive constant. The initial temperature and pressure of one mole of the gas contained in a cylinder are $T_o$ and $P_o$ respectively. The work done by the gas when its temperature doubles isobarically will be
In Column$-I $ a graph and in Column$-II$ processes are given. Match them appropriately :
Column$-I $ | Column$-II $ |
$(a)$ figure $(a)$ | $(i)$ Adiabatic process |
$(b)$ figure $(b)$ | $(ii)$ Isobaric process |
$(ii)$ Isochoric process |
Two samples $A$ and $B$ of a gas initially at the same pressure and temperature are compressed from volume $ V$ to $ V/2$ ($A$ isothermally and adiabatically). The final pressure of $ A$ is
You feel enjoy by having bath in shower in summer but not in winter. Why ?
An ideal gas undergoes four different processes from the same initial state as shown in the figure below. Those processes are adiabatic, isothermal, isobaric and isochoric. The curve which represents the adiabatic process among $1,2,3$ and $4$ is