14.Probability
normal

Out of all possible $8$ digit numbers formed using all the digits $0,0,1,1,2,3,4,4$ a number is randomly selected. Probability that the selected number is odd, is-

A

$\frac{5}{7}$

B

$\frac{5}{9}$

C

$\frac{5}{11}$

D

$\frac{5}{14}$

Solution

Total number of numbers $ = {\,^7}{{\rm{C}}_2} \cdot \frac{{6!}}{{2!2!}} = {\rm{a}}$

for odd numbers:

Numbers with unit's digit $3:$

$^{6} \mathrm{C}_{2} \cdot \frac{5 !}{2 ! 2 !}=\mathrm{b}$

Numbers with unit's digit $1:$

$^{6} \mathrm{C}_{2} \cdot \frac{5 !}{2 !}=\mathrm{c}$

$\therefore $ Required probability $=\frac{b+c}{a}=\frac{5}{14}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.