Let $X$ be a set containing $10$ elements and $P(X)$ be its power set. If $A$ and $B$ are picked up at random from $P(X),$ with replacement, then the probability that $A$ and $B$ have equal number elements, is
A bag contains $3$ red, $4$ white and $5$ blue balls. All balls are different. Two balls are drawn at random. The probability that they are of different colour is
In a collection of tentickets, there are two winning tickets. From this collection, five tickets are drawn at random Let $p_1$ and $p_2$ be the probabilities of obtaining one and two winning tickets, respectively. Then $p_1+p_2$ lies in the interval
Let $S=\{1,2,3,4,5,6\} .$ Then the probability that a randomly chosen onto function $\mathrm{g}$ from $\mathrm{S}$ to $\mathrm{S}$ satisfies $g(3)=2 g(1)$ is :
A bag contains $5$ black balls, $4$ white balls and $3$ red balls. If a ball is selected randomwise, the probability that it is a black or red ball is