Plane microwaves from a transmitter are directed normally towards a plane reflector. $A$ detector moves along the normal to the reflector. Between positions of $14$ successive maxima, the detector travels a distance $0.13\, m$. If the velocity of light is $3 \times 10^8 m/s$, find the frequency of the transmitter.

  • A

    $1.5 \times 10^{10}\, Hz$

  • B

    $10^{10}\, Hz$

  • C

    $3 \times 10^{10} \,Hz$

  • D

    $6 \times 10^{10}\, Hz$

Similar Questions

A plane $EM$ wave travelling along $z-$ direction is described$\vec E = {E_0}\,\sin \,(kz - \omega t)\hat i$ and $\vec B = {B_0}\,\sin \,(kz - \omega t)\hat j$. Show that

$(i)$ The average energy density of the wave is given by $U_{av} = \frac{1}{4}{ \in _0}E_0^2 + \frac{1}{4}.\frac{{B_0^2}}{{{\mu _0}}}$

$(ii)$ The time averaged intensity of the wave is given by  $ I_{av}= \frac{1}{2}c{ \in _0}E_0^2$ વડે આપવામાં આવે છે.

The electric field for a plane electromagnetic wave travelling in the $+y$ direction is  shown.  Consider a point where $\vec E$ is in $+z$ direction. The $\vec B$ field is

Wavelength of light of frequency $100\;Hz$

  • [AIPMT 1999]

The electric field part of an electromagnetic wave in vacuum is

$E = 3.1\,NC^{-1}\,cos\,[\,(1.8\,rad\,m^{-1})\,y + (5.4\times 18^8\,rad\,s^{-1})\,t\,]\,\hat i$

The wavelength of this part of electromagnetic wave is......$m$

An electromagnetic wave of frequency $1\times10^{14}\, hertz$ is propagating along $z-$ axis. The amplitude of electric field is $4\, V/m$ . lf ${\varepsilon_0}=\, 8.8\times10^{-12}\, C^2/Nm^2$ , then average energy density of electric field will be:

  • [JEE MAIN 2014]