- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
Point $'O' $ is the centre of the ellipse with major axis $AB$ $ \&$ minor axis $CD$. Point $F$ is one focus of the ellipse. If $OF = 6 $ $ \&$ the diameter of the inscribed circle of triangle $OCF$ is $2, $ then the product $ (AB)\,(CD) $ is equal to
A
$65$
B
$52$
C
$78$
D
none
Solution

$a^2 e^2 = 36 \Rightarrow a^2 – b^2 = 36….. (1)$
Using $r = (s – a) \tan \frac {A}{2}\, in\, \Delta OCF $
$1 = (s – a) tan 45°$ when $a = CF$
$2 = 2 (s – a)$
$= 2s – 2a = 2s – AB $
$= (OF + FC + CO) – AB $
$2 = 6 +\frac{{A\,B}}{2} + \frac{{C\,D}}{2} – AB$
$ \frac{AB-CD}{2} = 4 \Rightarrow 2 (a – b) = 8 \Rightarrow a – b = 4…. (2)$
From $(1)$ and $ (2)$ $ a + b = 9$
$ \Rightarrow $ $2a = 13$ $;$ $ 2b = 5$
$\Rightarrow $ $(AB) (CD) = 65$
Standard 11
Mathematics