Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Point $'O' $ is the centre of the ellipse with major axis $AB$ $ \&$ minor axis $CD$. Point $F$ is one focus of the ellipse. If $OF = 6 $  $ \&$  the diameter of the inscribed circle of triangle $OCF$  is $2, $ then the product $ (AB)\,(CD) $ is equal to

A

$65$

B

$52$

C

$78$

D

none

Solution

$a^2 e^2 = 36 \Rightarrow a^2 – b^2 = 36….. (1)$ 
Using $r = (s – a) \tan \frac {A}{2}\, in\, \Delta OCF $ 
$1 = (s – a) tan 45°$ when $a = CF$ 
$2 = 2 (s – a)$ 
$= 2s – 2a = 2s – AB $ 
$= (OF + FC + CO) – AB $ 
$2 = 6 +\frac{{A\,B}}{2} + \frac{{C\,D}}{2} – AB$ 
$ \frac{AB-CD}{2} = 4 \Rightarrow 2 (a – b) = 8 \Rightarrow a – b = 4…. (2)$ 
From $(1)$ and $ (2)$ $ a + b = 9$

$ \Rightarrow $ $2a = 13$  $;$ $ 2b = 5$

$\Rightarrow $ $(AB) (CD) = 65$ 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.