Let $f(x)=x^2+9, g(x)=\frac{x}{x-9}$ and $\mathrm{a}=\mathrm{fog}(10), \mathrm{b}=\operatorname{gof}(3)$. If $\mathrm{e}$ and $1$ denote the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{a}+\frac{y^2}{b}=1$, then $8 e^2+1^2$ is equal to.
$16$
$8$
$6$
$12$
Find the equation for the ellipse that satisfies the given conditions: Major axis on the $x-$ axis and passes through the points $(4,\,3)$ and $(6,\,2)$
Find the equation for the ellipse that satisfies the given conditions: Length of major axis $26$ foci $(±5,\,0)$
Latus rectum of ellipse $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ is
If the normal at the point $P(\theta )$ to the ellipse $\frac{{{x^2}}}{{14}} + \frac{{{y^2}}}{5} = 1$ intersects it again at the point $Q(2\theta )$, then $\cos \theta $ is equal to