What will be the equation of that chord of ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1$ which passes from the point $(2,1)$ and bisected on the point

  • A

    $x + y = 2$

  • B

    $x + y = 3$

  • C

    $x + 2y = 1$

  • D

    $x + 2y + 4$

Similar Questions

The distance of the point $'\theta '$on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ from a focus is

Area (in sq. units) of the region outside $\frac{|\mathrm{x}|}{2}+\frac{|\mathrm{y}|}{3}=1$ and inside the ellipse $\frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{y}^{2}}{9}=1$ is

  • [JEE MAIN 2020]

The ellipse ${x^2} + 4{y^2} = 4$ is inscribed in a rectangle aligned with the coordinate axes, which in trun is inscribed in another ellipse that passes through the point $(4,0) $  . Then the equation of the ellipse is :

  • [AIEEE 2009]

The length of the chord of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to:

  • [JEE MAIN 2024]

Let $x^2=4 k y, k>0$ be a parabola with vertex $A$. Let $B C$ be its latusrectum. An ellipse with centre on $B C$ touches the parabola at $A$, and cuts $B C$ at points $D$ and $E$ such that $B D=D E=E C(B, D, E, C$ in that order). The eccentricity of the ellipse is

  • [KVPY 2018]